library(Seurat) library(Rmagic) library(ggplot2) library(viridis) library(dplyr) library(ggpubr) library(openxlsx) library(gridExtra) wdir <- "./WPRE_mapping" # Fig5 A - CART Selection df_t <- read.xlsx(xlsxFile = paste("./Clustering_Analysis", "Full_T_Myelo_metadata.xlsx", sep = "/"), sheet = "Tcell", rowNames = T) ggplot(df_t, aes(x = UMAPh_1, y = UMAPh_2)) + theme_void(base_size = 12) + theme(legend.position = "none") + geom_point(data = subset(df_t, is.na(CART_MAGIC)), size = pt_size, color = "grey", alpha = .5) + geom_point(data = subset(df_t, CART_MAGIC == "CART_MAGIC"), size = pt_size, color = "darkred", alpha = .5) # Supplementary Fig11 B - WPRE MAGIC imputation df <- read.xlsx(xlsxFile = paste("./Clustering_Analysis", "Full_T_Myelo_metadata.xlsx", sep = "/"), sheet = "Full", rowNames = T) pt_size <- 0.6 p1 <- ggplot(df %>% arrange(TGeneCAR_WPRE_count), aes(x = UMAPh_1, y = UMAPh_2, color = TGeneCAR_WPRE_count)) + theme_bw() + theme(legend.position = "top") + xlab("UMAP 1") + ylab("UMAP 2") + scale_color_gradient(low = "grey", high = "darkred", name = "Count") + geom_point(size = pt_size) p2 <- ggplot(df %>% arrange(TGeneCAR_WPRE_MAGIC), aes(x = UMAPh_1, y = UMAPh_2, color = TGeneCAR_WPRE_MAGIC)) + theme_bw() + theme(legend.position = "top") + xlab("UMAP 1") + ylab("UMAP 2") + scale_color_gradient(low = "grey", high = "darkred", name = "Imputed") + geom_point(size = pt_size) p3 <- ggplot(df, aes(x = TGeneCAR_WPRE_MAGIC)) + theme_bw() + geom_histogram(bins = 150) + geom_vline(xintercept = 0.05, color = "red", linetype = "dashed") png(filename = paste(wdir, "MAGIC_imputation.png"), width = 1400, height = 400) grid.arrange(p1, p2, p3, nrow = 1) dev.off()