library(Seurat) library(ggplot2) library(dplyr) library(openxlsx) # Set Folders wdir <- "./Clustering_Analysis" # Figure 5A - Center df <- read.xlsx(xlsxFile = paste(wdir, "Full_T_Myelo_metadata.xlsx", sep = "/"), sheet = "Full") df$AnnotationRaw <- as.factor(df$AnnotationRaw) p <- ggplot(data = df, mapping = aes(x = UMAPh_1, y = UMAPh_2, color = AnnotationRaw)) + theme_void(base_size = 12) + theme(legend.position = "none") + geom_point(size = .3) Seurat::LabelClusters(plot = p, id = "AnnotationRaw", color = "black", size = 5) # Figure 5A - T cells df_t <- read.xlsx(xlsxFile = paste(wdir, "Full_T_Myelo_metadata.xlsx", sep = "/"), sheet = "Tcell") df_t$Annotation <- as.factor(df_t$Annotation) p_t <- ggplot(data = df_t, mapping = aes(x = UMAPh_1, y = UMAPh_2, color = Annotation)) + theme_void(base_size = 12) + theme(legend.position = "none") + geom_point(size = .6) Seurat::LabelClusters(plot = p_t, id = "Annotation", color = "black", size = 5) ggplot(data = df_t, mapping = aes(x = UMAPh_1, y = UMAPh_2)) + theme_void(base_size = 12) + theme(legend.position = "none") + geom_point(data = subset(df_t, is.na(CART_MAGIC)), size = .6, color = "grey80") + geom_point(data = subset(df_t, CART_MAGIC == "CART_MAGIC"), size = .6, color = "darkred") # Figure 5A - Myeloid cells df_m <- read.xlsx(xlsxFile = paste(wdir, "Full_T_Myelo_metadata.xlsx", sep = "/"), sheet = "Myeloid") df_m$Annotation <- as.factor(df_m$Annotation) p_m <- ggplot(data = df_m, mapping = aes(x = UMAPh_1, y = UMAPh_2, color = Annotation)) + theme_void(base_size = 12) + theme(legend.position = "none") + geom_point(size = .6) Seurat::LabelClusters(plot = p_m, id = "Annotation", color = "black", size = 5) # Figure S12 - CD4 CAR-T df$CART_CD4_MAGIC[is.na(df$CART_CD4_MAGIC)] <- "NOCAR" t <- table(df$CART_CD4_MAGIC, df$orig.ident) t <- rbind(t, colSums(t)) rownames(t) <- c("CART_CD4_MAGIC", "NOCAR", "Total") t <- data.frame(t(t)) t$CART_CD4_MAGIC_perc <- 100 * (t$CART_CD4_MAGIC / t$Total) t$Condition <- stringr::str_split_fixed(rownames(t), "-", 2)[,2] # Fig. S12 - A ggplot(data = t, mapping = aes(x = Condition, y = CART_CD4_MAGIC_perc, color = Condition)) + theme_bw(base_size = 18) + theme(legend.position = "none") + geom_point(size = 3) + ylab("CD4 WPRE+ (% of total cells)") + xlab("") + scale_y_continuous(limits = c(0,6)) # Fig. S12 - B t <- df %>% filter(CART_CD4_MAGIC == "CART_CD4_MAGIC") %>% group_by(PROP.Condition, Annotation) %>% summarise(TotCells = n()) ggplot(data = t, mapping = aes(x = PROP.Condition, y = TotCells, fill = Annotation)) + theme_bw(base_size = 18) + theme(legend.position = "right") + geom_bar(stat = "identity", position = "fill") + xlab("") + ylab("count")