Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
custom
Squadrito_LiverTumor2022
Squadrito_LiverTumor2022_scRNAseqTRC
Commits
79e28964
Commit
79e28964
authored
Jul 26, 2023
by
Stefano Beretta
Browse files
Upload New File
parent
2fd8c621
Changes
1
Show whitespace changes
Inline
Side-by-side
scripts/3_Visualization_Export.R
0 → 100644
View file @
79e28964
library
(
SeuratObject
)
library
(
Seurat
)
library
(
harmony
)
library
(
grid
)
library
(
cowplot
)
library
(
gridExtra
)
library
(
RColorBrewer
)
library
(
patchwork
)
library
(
scales
)
library
(
ggplot2
)
library
(
openxlsx
)
library
(
SingleR
)
########################
### General Settings ###
########################
# Working dir
wdir
<-
"squadrito_livertumor2022_scrnaseq"
# Results dir
out_dir
<-
paste
(
wdir
,
"results"
,
sep
=
"/"
)
dir.create
(
path
=
out_dir
,
showWarnings
=
F
)
# Load Full object
Full_obj
<-
readRDS
(
paste
(
out_dir
,
"Full_DBR"
,
"Full_DBR_final_DBR_labeled.rds"
,
sep
=
"/"
))
NKT_obj
<-
readRDS
(
paste
(
out_dir
,
"TNK"
,
"TNK_DBR_final.rds"
,
sep
=
"/"
))
APC_obj
<-
readRDS
(
paste
(
out_dir
,
"APCs"
,
"APCs_DBR_final.rds"
,
sep
=
"/"
))
# TCR recomputation
NKT_obj
@
meta.data
$
Samples
<-
"Undefined"
NKT_obj
@
meta.data
$
Samples
[
NKT_obj
@
meta.data
$
orig.ident
==
"GG-22"
]
<-
"Combo_22"
NKT_obj
@
meta.data
$
Samples
[
NKT_obj
@
meta.data
$
orig.ident
==
"GG-11"
]
<-
"Ctrl_11"
NKT_obj
@
meta.data
$
Samples
[
NKT_obj
@
meta.data
$
orig.ident
==
"GG-18"
]
<-
"IFNa_18"
NKT_obj
@
meta.data
$
Samples
[
NKT_obj
@
meta.data
$
orig.ident
==
"GG-23"
]
<-
"IFNa_23"
NKT_obj
@
meta.data
$
Samples
[
NKT_obj
@
meta.data
$
orig.ident
==
"GG-25"
]
<-
"Ctrl_25"
NKT_obj
@
meta.data
$
Newlabels_detailed
[
NKT_obj
@
meta.data
$
Newlabels_detailed
==
"CD8 Teff_GG cells"
]
<-
"CD8 Teff_ex cells"
NKT_obj
@
meta.data
$
Newlabels_detailed
[
NKT_obj
@
meta.data
$
Newlabels_detailed
==
"CD8 Teff_TK cells"
]
<-
"CD8 Teff_ex cells"
###New ColFreq
NKT_obj
@
meta.data
$
IDS
<-
rownames
(
NKT_obj
@
meta.data
)
df.VDJ
<-
NKT_obj
@
meta.data
%>%
select
(
IDS
,
Samples
,
cdr3_aa2
)
%>%
filter
(
!
is.na
(
cdr3_aa2
))
%>%
group_by
(
Samples
,
cdr3_aa2
)
%>%
mutate
(
ClonoFreq2
=
n
())
NKT_obj
@
meta.data
<-
merge
(
NKT_obj
@
meta.data
,
df.VDJ
,
by.x
=
0
,
by.y
=
1
,
all.x
=
T
)
rownames
(
NKT_obj
@
meta.data
)
<-
NKT_obj
@
meta.data
$
IDS
###Make contingecy tables
#cloneType
NKT_obj
@
meta.data
$
cloneType
<-
"NA"
a1
<-
25
a2
<-
15
a3
<-
5
a4
<-
1
#cloneType
NKT_obj
@
meta.data
$
cloneType
<-
"NA"
# Assign values based on conditions
NKT_obj
@
meta.data
$
cloneType
[
NKT_obj
@
meta.data
$
ClonoFreq2
>
a1
]
<-
paste0
(
"Hyperexpanded (x>"
,
a1
,
")"
)
NKT_obj
@
meta.data
$
cloneType
[
NKT_obj
@
meta.data
$
ClonoFreq2
>
a2
&
NKT_obj
@
meta.data
$
ClonoFreq2
<=
a1
]
<-
paste0
(
"Large ("
,
a2
,
"< x <="
,
a1
,
")"
)
NKT_obj
@
meta.data
$
cloneType
[
NKT_obj
@
meta.data
$
ClonoFreq2
>
a3
&
NKT_obj
@
meta.data
$
ClonoFreq2
<=
a2
]
<-
paste0
(
"Medium ("
,
a3
,
"< x <="
,
a2
,
")"
)
NKT_obj
@
meta.data
$
cloneType
[
NKT_obj
@
meta.data
$
ClonoFreq2
>
a4
&
NKT_obj
@
meta.data
$
ClonoFreq2
<=
a3
]
<-
paste0
(
"Small("
,
a4
,
"< x <="
,
a3
,
")"
)
NKT_obj
@
meta.data
$
cloneType
[
NKT_obj
@
meta.data
$
ClonoFreq2
==
a4
]
<-
paste0
(
"Unique(x="
,
a4
,
")"
)
#####################################
## Visualisation and data analysis ##
#####################################
# Figure 8F
# Upper pannel
DimPlot
(
object
=
NKT_obj
,
reduction
=
"umap"
,
group.by
=
"Newlabels_detailed"
,
pt.size
=
1
,
label
=
T
,
split.by
=
"RNA_Group"
)
+
ylim
(
-6
,
7
)
# Lower pannel
DimPlot
(
object
=
NKT_obj
,
reduction
=
"umap"
,
group.by
=
"cloneType"
,
cols
=
c
(
"brown"
,
"brown1"
,
"darkorange"
,
"grey"
,
"darkslategray"
,
"chartreuse4"
),
pt.size
=
1
,
label
=
F
,
split.by
=
"RNA_Group"
)
+
ylim
(
-6
,
7
)
# Data analysis for Figure 8G (number of cells in cloneType)
df1
<-
table
(
NKT_obj
@
meta.data
$
cloneType
,
NKT_obj
@
meta.data
$
Samples.x
)
write.xlsx
(
df1
,
"TNK_TCR_clonotypes.xlsx"
)
# Data analysis for Figure 8H (number of cells in cloneType)
df1
<-
table
(
NKT_obj
@
meta.data
$
ClonoFreq2
,
NKT_obj
@
meta.data
$
Samples.x
)
/
as.numeric
(
rownames
(
table
(
NKT_obj
@
meta.data
$
ClonoFreq2
,
NKT_obj
@
meta.data
$
Samples.x
)))
colSums
(
df1
[
as.numeric
(
rownames
(
df1
))
>
1
,])
# Figure S8E
DimPlot
(
object
=
APC_obj
,
reduction
=
"umap"
,
group.by
=
"Newlabels_detailed"
,
pt.size
=
1.2
,
label
=
T
,
label.size
=
4
,
split.by
=
"RNA_Group"
)
+
xlim
(
-6
,
6
)
# Figure S8F
APC_obj
@
meta.data
$
RNA_Group
<-
factor
(
APC_obj
@
meta.data
$
RNA_Group
,
levels
=
rev
(
unique
(
APC_obj
@
meta.data
$
RNA_Group
)))
MHCI_genes
<-
c
(
"H2-T22"
,
"H2-T23"
,
"H2-D1"
,
"B2m"
,
"Tap1"
,
"Tap2"
,
"Tapbp"
,
"Psmb8"
,
"Psmb9"
,
"Cd86"
)
MHCII_genes
<-
c
(
"H2-Aa"
,
"H2-Ab1"
,
"H2-Eb1"
,
"H2-DMb1"
,
"H2-Oa"
,
"Ciita"
,
"Cd74"
,
"Cd40"
)
IL10_gens
<-
c
(
"Tgfb1"
,
"Cebpb"
,
"Il4ra"
,
"Socs3"
,
"Ccl24"
)
CTRL_genes
<-
c
(
"Mmp8"
,
"Tmem176b"
,
"Trem2"
,
"Fn1"
)
DotPlot
(
object
=
APC_obj
,
features
=
c
(
MHCI_genes
,
MHCII_genes
,
IL10_gens
,
CTRL_genes
),
group.by
=
"RNA_Group"
,
dot.scale
=
15
,
scale
=
F
,
dot.min
=
0.1
)
+
theme
(
axis.text.x
=
element_text
(
angle
=
45
,
vjust
=
1
,
hjust
=
1
))
# Figure S8G
# Feature plots
plist
<-
FeaturePlot
(
TNK_obj
,
reduction
=
"umap"
,
features
=
c
(
"Pdcd1"
,
"Havcr2"
,
"Ifng"
,
"Entpd1"
,
"Itga1"
,
"Cxcr6"
,
"Prf1"
),
pt.size
=
1.2
,
ncol
=
4
,
order
=
TRUE
,
combine
=
FALSE
)
plist
<-
lapply
(
plist
,
function
(
g
)
{
g
+
ylim
(
c
(
-6
,
7
))
})
CombinePlots
(
plist
,
ncol
=
4
)
# Dimplot
DimPlot
(
object
=
TNK_obj
,
reduction
=
"umap"
,
group.by
=
"Newlabels_detailed"
,
pt.size
=
1.2
,
label
=
T
,
label.size
=
4
)
+
ylim
(
c
(
-6
,
7
))
# Figure S8H
# Generate obj containing T cells with detected TCR
TNK_obj
<-
SetIdent
(
object
=
TNK_obj
,
value
=
"cloneType"
)
# Create DotPlot
TNK_VDJ_obj
<-
subset
(
TNK_obj
,
idents
=
c
(
"NA"
),
invert
=
T
)
DotPlot
(
TNK_VDJ_obj
,
features
=
c
(
"Entpd1"
,
"Cd27"
,
"Tnfrsf9"
,
"Mir155hg"
,
"Batf"
,
"Tigit"
,
"Pdcd1"
,
"Havcr2"
,
"Il7r"
,
"Ptprc"
,
"Prf1"
,
"Ifng"
,
"Tnf"
,
"Itga1"
,
"Cd69"
),
group.by
=
"cloneType"
,
dot.scale
=
11
)
+
theme
(
axis.text.x
=
element_text
(
angle
=
45
,
vjust
=
1
,
hjust
=
1
))
####################
## Export results ##
####################
data_dir
<-
paste
(
wdir
,
"data"
,
sep
=
"/"
)
dir.create
(
path
=
data_dir
,
showWarnings
=
F
)
## Full ##
# Counts
full_counts
<-
Full_obj
@
assays
$
RNA
@
counts
gz_out_counts
<-
gzfile
(
paste
(
data_dir
,
"Full_DBR_final_DBR_labeled_counts.csv.gz"
,
sep
=
"/"
),
"w"
)
write.csv
(
full_counts
,
gz_out_counts
)
close
(
gz_out_counts
)
# Meta Data
full_md
<-
Full_obj
@
meta.data
gz_out_md
<-
gzfile
(
paste
(
data_dir
,
"Full_DBR_final_DBR_labeled_metadata.csv.gz"
,
sep
=
"/"
),
"w"
)
write.csv
(
x
=
full_md
,
gz_out_md
)
close
(
gz_out_md
)
# UMAP Coordinates
full_umap
<-
Full_obj
@
reductions
$
umap
@
cell.embeddings
gz_out_umap
<-
gzfile
(
paste
(
data_dir
,
"Full_DBR_final_DBR_labeled_umap.csv.gz"
,
sep
=
"/"
),
"w"
)
write.csv
(
x
=
full_umap
,
gz_out_umap
)
close
(
gz_out_umap
)
## Markers Full object Newlabels
DefaultAssay
(
object
=
Full_obj
)
<-
"RNA"
annotation
<-
"Newlabels"
Full_obj
<-
SetIdent
(
Full_obj
,
value
=
annotation
)
tableFull_obj
<-
FindAllMarkers
(
Full_obj
)
write.table
(
tableFull_obj
,
paste
(
data_dir
,
"scRNAseq_DIFgenes_Full_obj_FC0.25 (Table S6).txt"
,
sep
=
"/"
),
quote
=
FALSE
,
sep
=
"\t"
)
## TNK ##
# Counts
TNK_counts
<-
TNK_obj
@
assays
$
RNA
@
counts
gz_out_counts
<-
gzfile
(
paste
(
data_dir
,
"TNK_DBR_final_counts.csv.gz"
,
sep
=
"/"
),
"w"
)
write.csv
(
TNK_counts
,
gz_out_counts
)
close
(
gz_out_counts
)
# Meta Data
TNK_md
<-
TNK_obj
@
meta.data
gz_out_md
<-
gzfile
(
paste
(
data_dir
,
"TNK_DBR_final_metadata.csv.gz"
,
sep
=
"/"
),
"w"
)
write.csv
(
x
=
TNK_md
,
gz_out_md
)
close
(
gz_out_md
)
# UMAP Coordinates
TNK_umap
<-
TNK_obj
@
reductions
$
umap
@
cell.embeddings
gz_out_umap
<-
gzfile
(
paste
(
data_dir
,
"TNK_DBR_final_umap.csv.gz"
,
sep
=
"/"
),
"w"
)
write.csv
(
x
=
TNK_umap
,
gz_out_umap
)
close
(
gz_out_umap
)
## Markers TNK_obj Newlabels_detailed
DefaultAssay
(
object
=
TNK_obj
)
<-
"RNA"
annotation
<-
"Newlabels_detailed"
TNK_obj
<-
SetIdent
(
TNK_obj
,
value
=
annotation
)
tableTNK_obj
<-
FindAllMarkers
(
TNK_obj
)
write.table
(
tableTNK_obj
,
paste
(
data_dir
,
"scRNAseq_DIFgenes_TNK_FC0.25 (Table S8).txt"
,
sep
=
"/"
),
quote
=
FALSE
,
sep
=
"\t"
)
## APCs ##
# Counts
APC_counts
<-
APC_obj
@
assays
$
RNA
@
counts
gz_out_counts
<-
gzfile
(
paste
(
data_dir
,
"APCs_DBR_final_counts.csv.gz"
,
sep
=
"/"
),
"w"
)
write.csv
(
APC_counts
,
gz_out_counts
)
close
(
gz_out_counts
)
# Meta Data
APC_md
<-
APC_obj
@
meta.data
gz_out_md
<-
gzfile
(
paste
(
data_dir
,
"APCs_DBR_final_metadata.csv.gz"
,
sep
=
"/"
),
"w"
)
write.csv
(
x
=
APC_md
,
gz_out_md
)
close
(
gz_out_md
)
# UMAP Coordinates
APC_umap
<-
APC_obj
@
reductions
$
umap
@
cell.embeddings
gz_out_umap
<-
gzfile
(
paste
(
data_dir
,
"APCs_DBR_final_umap.csv.gz"
,
sep
=
"/"
),
"w"
)
write.csv
(
x
=
APC_umap
,
gz_out_umap
)
close
(
gz_out_umap
)
## Markers APC_obj Newlabels_detailed
DefaultAssay
(
object
=
APC_obj
)
<-
"RNA"
annotation
<-
"Newlabels_detailed"
APC_obj
<-
SetIdent
(
APC_obj
,
value
=
annotation
)
tableAPC_obj
<-
FindAllMarkers
(
APC_obj
)
write.table
(
tableAPC_obj
,
paste
(
data_dir
,
"scRNAseq_DIFgenes_APC_FC0.25 (Table S7).txt"
,
sep
=
"/"
),
quote
=
FALSE
,
sep
=
"\t"
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment