Figure1_plots.R 10.6 KB
Newer Older
Monah Abou Alezz's avatar
Monah Abou Alezz committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
suppressPackageStartupMessages(library(DESeq2))
suppressPackageStartupMessages(library(stringr))
suppressPackageStartupMessages(library(tidyverse))
suppressPackageStartupMessages(library(pheatmap))
suppressPackageStartupMessages(library(RColorBrewer))
suppressPackageStartupMessages(library(openxlsx))
suppressPackageStartupMessages(library(org.Hs.eg.db))
suppressPackageStartupMessages(library(clusterProfiler))

## Input featureCounts file
fcount.file <- "Scarfo_HEC2023/BulkRNAseq_1/featureCounts_results_corrected.txt"
## Contrasts to perform
contr <- "ACE_pos:ACE_neg"
contr.list <- unlist(strsplit(contr, ","))
## Design Formula
formula.str <- "donor,condition"
design.str <- gsub(",", "+", formula.str)
num_cond <- str_count(formula.str, ",") + 1
design.formula <- as.formula(paste("~", design.str, sep = ""))
## Read featureCounts results
if (!file.exists(fcount.file)) {
  stop("Error: featureCounts file not found.")
} else {
  read.counts <- read.table(fcount.file, 
                            header = TRUE, 
                            check.names = FALSE) %>%
    column_to_rownames(var = "Geneid") %>%
    select(-c(1:5)) 
}
orig.names <- names(read.counts)
ds <- list()
cond <- list()
for (i in seq(orig.names[1:length(orig.names)])) {
  ds[i] <- unlist(strsplit(orig.names[i], ":"))[2]
  cond[i] <- unlist(strsplit(orig.names[i], ":"))[3]
}
ds <- unlist(ds)
cond <- unlist(cond)
## Samples - Conditions
sample_info <- as.data.frame(str_split_fixed(cond, ",", num_cond))
colnames(sample_info) <- str_split_fixed(formula.str, ",", num_cond)
rownames(sample_info) <- ds
colnames(read.counts) <- ds
sample_info$condition <- factor(sample_info$condition)
last_condition <- str_split_fixed(formula.str, ",", num_cond)[num_cond]
batch_cond <- str_split_fixed(formula.str, ",", num_cond)[num_cond - 1]
## thresholds
adj.pval.thr <- 0.05
logfc.thr <- 0
## DESeq2 
DESeq.ds <- DESeqDataSetFromMatrix(countData = read.counts,
                                   colData = sample_info,
                                   design = design.formula)
## Remove genes without any counts
DESeq.ds <- DESeq.ds[rowSums(counts(DESeq.ds)) > 0, ]
## RunDGE
DESeq.ds <- DESeq(DESeq.ds)
## obtain regularized log-transformed values
DESeq.rlog <- rlogTransformation(DESeq.ds, blind = TRUE)
assay(DESeq.rlog) <- limma::removeBatchEffect(assay(DESeq.rlog), DESeq.rlog[[batch_cond]])
ctrs <- unlist(strsplit(contr.list[1], ":"))
c1 <- ctrs[1]
c2 <- ctrs[2]
DGE.results <- results(DESeq.ds,
                       pAdjustMethod = "BH",
                       independentFiltering = TRUE,
                       contrast = c(last_condition, c1, c2),
                       alpha = adj.pval.thr)
# Change format
DGE.results.annot <- as.data.frame(DGE.results) %>% 
  dplyr::select(log2FoldChange, lfcSE, baseMean, pvalue, padj)
colnames(DGE.results.annot) <- c("logFC", "lfcSE", "baseMean", "PValue", "FDR")
## sort the results according to the adjusted p-value
DGE.results.sorted <- DGE.results.annot[order(DGE.results.annot$FDR), ]
## Subset for only significant genes
DGE.results.sig <- subset(DGE.results.sorted, 
                          FDR < adj.pval.thr & abs(logFC) > logfc.thr)
DGEgenes <- rownames(DGE.results.sig)


# Fig1B ---------------------------------------------------------------------

plotPCA(DESeq.rlog, intgroup = last_condition, ntop = 500) +
  theme_bw() +
  ggtitle(label = "Principal Component Analysis (PCA)",
          subtitle = "Top 500 DEG (with batch correction)") +
  geom_point(size = 2) +
  #coord_fixed(ratio=3) +
  geom_text(aes(label = rownames(DESeq.rlog@colData)), vjust = 0, nudge_y = 0.5,
            show.legend = FALSE)

# Fig1C ----------------------------------------------------------------

## DEGs
s_info <- sample_info[sample_info[[last_condition]] == c1 | sample_info[[last_condition]] == c2,, drop = FALSE]
hm.mat_DGEgenes <- assay(DESeq.rlog)[DGEgenes, ]
hm.mat_DGEgenes.filt <- hm.mat_DGEgenes[, row.names(s_info)]

pheatmap::pheatmap(hm.mat_DGEgenes.filt,
                   color = colorRampPalette(rev(brewer.pal(n = 9, name ="RdYlBu")))(100),
                   fontsize_row = 5,
                   show_rownames = FALSE,
                   scale = "row",
                   angle_col = 90,
                   cluster_rows = TRUE,
                   annotation_col = s_info,
                   cluster_cols = TRUE)

# Fig1D ----------------------------------------------------------------

## surface genes
if(!file.exists("Scarfo_HEC2023/BulkRNAseq_1/table_S3_surfaceome.xlsx")){
  download.file("http://wlab.ethz.ch/surfaceome/table_S3_surfaceome.xlsx", 
                destfile = "Scarfo_HEC2023/BulkRNAseq_1/table_S3_surfaceome.xlsx")  
}
sg <- read.xlsx("Scarfo_HEC2023/BulkRNAseq_1/table_S3_surfaceome.xlsx", 
                sheet = "in silico surfaceome only",
                colNames = T,
                startRow = 2)
sig_sg <- DGE.results.sig[c(row.names(DGE.results.sig) %in% sg$UniProt.gene), ]
markers <- c("CD34","CDH5","PECAM1","TEK","NR2F2","FLRT2","BMX","GJA5","DLL4","CXCR4","HEY2","MYB","GFI1","CD44")
DESeq.rlog_mat <- assay(DESeq.rlog)
DESeq.rlog_mat <- DESeq.rlog_mat[c(row.names(DESeq.rlog_mat) %in% markers), ]
DESeq.rlog_mat <- DESeq.rlog_mat[markers,]
# Specify colors
ann_colors = list(
  condition = c(ACE_neg = "gold3",
                ACE_pos = "turquoise3"),
  donor = c(E1 = "#E76BF3",
            E2 = "#F8766D",
            E3 = "#529EFF",
            E4 = "springgreen3")
)
pheatmap::pheatmap(DESeq.rlog_mat,
                   color = colorRampPalette(rev(brewer.pal(n = 9, name ="RdYlBu")))(100),
                   annotation_col = s_info,
                   annotation_names_row = FALSE,
                   annotation_colors = ann_colors,
                   show_rownames = TRUE,
                   show_colnames = TRUE,
                   cluster_rows = FALSE,
                   angle_col = 45,
                   fontsize = 14,
                   fontsize_row = 14,
                   fontsize_col = 18,
                   cellheight = 20,
                   cellwidth = 30)


# Fig1E --------------------------------------------

gmt.obj <- read.gmt("Scarfo_HEC2023/BulkRNAseq_1/c5.all.v7.2.symbols.gmt")
organism.db <- org.Hs.eg.db
# Remove genes with no FDR
DGE.results.annot <- DGE.results.annot[!is.na(DGE.results.annot$FDR), ]
gene_univ <- row.names(DGE.results.annot)
# get positive and negative gene names
gene.res.top <- subset(DGE.results.annot, FDR < adj.pval.thr  & abs(logFC) > logfc.thr)
gene.res.top.pos <- subset(gene.res.top, logFC > 0)
gene.res.top.neg <- subset(gene.res.top, logFC < 0)

## Over Representation Analysis
comp <- c("gene.res.top.pos","gene.res.top.neg")
for (i in comp) {
  print(paste0("Analyzing...",i," genes"))
  obj_i <- get(i)
  contr.enricher <- enricher(row.names(obj_i),
                             universe = gene_univ,
                             pvalueCutoff = adj.pval.thr,
                             TERM2GENE = gmt.obj)
  contr.enricher.res <- as.data.frame(contr.enricher)
  assign(paste("contr.enricher",i,sep = "."), contr.enricher.res)
}

## barplots
terms.pos <- data.frame(
  ID = c("GO_LEUKOCYTE_MIGRATION","GO_AMEBOIDAL_TYPE_CELL_MIGRATION","GO_TISSUE_MIGRATION","GO_POSITIVE_REGULATION_OF_EPITHELIAL_CELL_MIGRATION","GO_REGULATION_OF_EPITHELIAL_CELL_MIGRATION","GO_ENDOTHELIAL_CELL_MIGRATION","GO_REGULATION_OF_ENDOTHELIAL_CELL_MIGRATION","GO_COLLAGEN_CONTAINING_EXTRACELLULAR_MATRIX","GO_EXTRACELLULAR_MATRIX","GO_CELL_CELL_JUNCTION","GO_NEGATIVE_REGULATION_OF_CELL_ADHESION","GO_REGULATION_OF_CELL_CELL_ADHESION","GO_LEUKOCYTE_CELL_CELL_ADHESION","GO_EXTRACELLULAR_MATRIX_BINDING"),
  Type = c(rep("Migration", 7), rep("Adhesion", 7)))
terms.pos <- left_join(terms.pos,contr.enricher.gene.res.top.pos,by="ID")

terms.neg <- data.frame(
  ID = c("GO_POSITIVE_REGULATION_OF_CELL_CYCLE_PROCESS","GO_POSITIVE_REGULATION_OF_CELL_CYCLE","GO_POSITIVE_REGULATION_OF_CELL_CYCLE_G2_M_PHASE_TRANSITION","GO_POSITIVE_REGULATION_OF_CELL_CYCLE_PHASE_TRANSITION","GO_MITOTIC_CELL_CYCLE_CHECKPOINT","GO_MITOTIC_NUCLEAR_DIVISION","GO_POSITIVE_REGULATION_OF_MITOTIC_CELL_CYCLE"),
  Type = "Cell Cycle")
terms.neg <- left_join(terms.neg,contr.enricher.gene.res.top.neg,by="ID")
terms.to.plot <- rbind(terms.pos, terms.neg)
terms.to.plot <- na.omit(terms.to.plot)
parsed.terms <- as.data.frame(str_split_fixed(terms.to.plot$ID, "GO_", 2))
renamed.terms <- as.data.frame(str_replace_all(parsed.terms$V2, "_", " "))
colnames(renamed.terms) <- "id"
renamed.terms$Terms <- str_to_title(renamed.terms$id)
terms.to.plot <- cbind(terms.to.plot,renamed.terms)
terms.to.plot <- terms.to.plot[,c(12,10,7,2)]
terms.to.plot$Type <- factor(terms.to.plot$Type, levels = c("Cell Cycle", "Migration", "Adhesion"))
terms.to.plot$Terms <- factor(terms.to.plot$Terms, levels = terms.to.plot$Terms)
terms.to.plot <- terms.to.plot %>%
  mutate(color = ifelse(Type == "Cell Cycle", "gold3", "turquoise3"),
         regulated = ifelse(Type == "Cell Cycle", "Upregulated in ACEneg", "Upregulated in ACE+"))
terms.to.plot$regulated <- factor(terms.to.plot$regulated, 
                                  levels = c("Upregulated in ACEneg","Upregulated in ACE+"))
terms.to.plot$log_pvalue <- -log10(terms.to.plot$p.adjust)
ggplot(data=terms.to.plot, aes(x=Terms, 
                               y=log_pvalue,
                               fill=regulated,
                               xmin = min(log_pvalue),
                               xmax = max(log_pvalue))) +
  geom_bar(stat="identity", width = 0.7) +
  scale_fill_manual(values = c("gold3", "turquoise3"))+
  theme_bw() +
  coord_flip() +
  ylab(expression(-log[10]("adjusted p-value"))) +
  xlab("GO Terms") +
  #scale_x_discrete(limits = GO_terms_all$Term) +
  facet_grid(Type ~., scales = "free_y", space = "free_y") +
  theme(
    axis.title.x = element_text(colour="black",family = "Arial", size=16),
    axis.text.x = element_text(colour="black",family = "Arial", size=12),
    axis.title.y = element_text(colour="black",family = "Arial", size=16),
    axis.text.y = element_text(color="black",family = "Arial", size=12),
    legend.text = element_text(colour="black",family = "Arial", size=12),
    legend.title = element_text(colour="white",family = "Arial", size=12),
    strip.background = element_rect(colour="black",
                                    fill="white"),
    strip.text = element_text(family = "Arial", size=12))

## GSEA
DGE.results.annot.sorted <- DGE.results.annot[order(DGE.results.annot$logFC, decreasing = TRUE), ]
# LogFC with Symbols
gene.res.logfc.symbol <- as.vector(DGE.results.annot.sorted$logFC)
names(gene.res.logfc.symbol) <- row.names(DGE.results.annot.sorted)
contr.gsea <- GSEA(gene.res.logfc.symbol, 
                   TERM2GENE = gmt.obj,
                   nPerm = 10000, 
                   pvalueCutoff = adj.pval.thr)
contr.gsea.res <- as.data.frame(contr.gsea)