Fig5_plots.R 10.9 KB
Newer Older
Monah Abou Alezz's avatar
Monah Abou Alezz committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
suppressPackageStartupMessages(library(Seurat))
suppressPackageStartupMessages(library(monocle3))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(reshape2))
suppressPackageStartupMessages(library(ggplot2))
suppressPackageStartupMessages(library(patchwork))
suppressPackageStartupMessages(library(clusterProfiler))

## load Seurat data
sample <- readRDS("Scarfo_HEC2023/scRNAseq/WNTd_HE.rds")

# Fig5A ------------------------------------------------------------------

DimPlot(object = sample,
        reduction = "umap",
        group.by = "RNA_snn_res.0.6",
        label = T,
        repel = T,
        pt.size = 0.8,
        label.size = 8,
        cols = c("0" = "#F8766D",
                 "1" = "#B79F00",
                 "2" = "#00BA38",
                 "3" = "#EC8239",
                 "4"= "#00B81B",
                 "5"= "#7C96FF",
                 "6"= "#00C085",
                 "7" = "#00C1A7",
                 "8" = "#00BFC4",
                 "9" = "#EF67EB",
                 "10" = "#00B2F3",
                 "11"= "#00BFC4",
                 "12"= "#00A6FF",
                 "13"= "#DB8E00",
                 "14"= "#FD61D3",
                 "15"= "#FF63B6",
                 "16"= "#619CFF",
                 "17"= "#F564E3",
                 "18"= "#00BADE",
                 "19"= "#B385FF",
                 "20"= "#D874FD",
                 "21"= "#FF6B94")) +
  ggtitle("") +
  xlab("UMAP1") +
  ylab("UMAP2") +
  theme(legend.text = element_text(size = 16*96/72),
        axis.text.x = element_text(color = "black", family = "Arial",size = 14*96/72),
        axis.text.y = element_text(color = "black", family = "Arial",size = 14*96/72),
        axis.title.x = element_text(color = "black", family = "Arial",size = 16*96/72),
        axis.title.y = element_text(color = "black", family = "Arial",size = 16*96/72),
        aspect.ratio = 1,
        panel.background = element_blank()) +
  guides(color = guide_legend(override.aes = list(size=4)))


## Seurat markers
markers <- FindAllMarkers(sample, 
                          only.pos = T, 
                          min.pct = 0.1, 
                          logfc.threshold = 0.25)
## define RUNX1 clusters
runx1.clusters <- subset(markers, markers$gene=="RUNX1")
runx1.clusters <- droplevels(runx1.clusters$cluster) 
## subset RUNX1 clusters into new object
runx1 <- subset(sample, idents = runx1.clusters)
DimPlot(object = runx1,
        reduction = "umap",
        group.by = "RNA_snn_res.0.6",
        label = T,
        repel = T,
        pt.size = 0.8,
        label.size = 8)


# Fig5B ----------------------------------------------------------------

## Monocle3
Idents(runx1) <- "RNA_snn_res.0.6"
start = WhichCells(runx1,idents = "0")
expression_matrix <- runx1@assays[["RNA"]]@counts
cell_metadata <- runx1@meta.data
cell_metadata$orig.ident <- factor(cell_metadata$orig.ident, levels = unique(cell_metadata$orig.ident))
gene_annotation <- data.frame("gene_short_name" = rownames(runx1))
rownames(gene_annotation) <- gene_annotation$gene_short_name
cds <- new_cell_data_set(expression_data = expression_matrix, 
                         cell_metadata = cell_metadata, 
                         gene_metadata = gene_annotation)
cds <- preprocess_cds(cds, num_dim = 50)
cds <- reduce_dimension(cds)
## Construct and assign the made up partition
recreate.partition <- c(rep(1, length(cds@colData@rownames)))
names(recreate.partition) <- cds@colData@rownames
recreate.partition <- as.factor(recreate.partition)
cds@clusters@listData[["UMAP"]][["partitions"]] <- recreate.partition
## Assign the cluster info
list_cluster <- runx1@meta.data[["RNA_snn_res.0.6"]]
names(list_cluster) <- runx1@assays[["RNA"]]@data@Dimnames[[2]]
cds@clusters@listData[["UMAP"]][["clusters"]] <- list_cluster
cds@clusters@listData[["UMAP"]][["louvain_res"]] <- "NA"
## Assign UMAP coordinate
reducedDims(cds)[["UMAP"]] <- runx1@reductions[["umap"]]@cell.embeddings
### Reset colnames and rownames (consequence of UMAP replacement)
rownames(cds@principal_graph_aux[['UMAP']]$dp_mst) <- NULL
## Learn Graph
cds <- learn_graph(cds = cds,use_partition = T,learn_graph_control=list(ncenter=220,minimal_branch_len=15),verbose = T)

plot_cells(cds,
           color_cells_by = "RNA_snn_res.0.6",
           label_groups_by_cluster=FALSE,
           label_leaves=F,
           label_branch_points=F,
           graph_label_size=1.5,
           group_label_size = 6,
           cell_size = 1)


# Fig5C -------------------------------------------------------------------

## differential markers
degs_clu11_vs_clu0_1_2 <- FindMarkers(object = runx1, ident.1 = 11, ident.2 = c(0,1,2), only.pos = FALSE, min.pct = 0, test.use = "wilcox", logfc.threshold = 0, min.cells.group = 0)
degs_clu11_vs_clu16_17 <- FindMarkers(object = runx1, ident.1 = 11, ident.2 = c(16,17), only.pos = FALSE, min.pct = 0, test.use = "wilcox", logfc.threshold = 0, min.cells.group = 0)

## GSEA
adj.pval.thr <- 0.05
gmt.obj <- read.gmt("Scarfo_HEC2023/BulkRNAseq_1/c5.all.v7.2.symbols.gmt")
comp <- c("clu11_vs_clu0_1_2", "clu11_vs_clu16_17")
for (i in comp) {
  degs <- get(paste("degs",i,sep="_"))
  gene.res.sorted <- degs[order(degs$avg_logFC, decreasing = TRUE), ]
  # LogFC with Symbols
  gene.res.logfc.symbol <- as.vector(gene.res.sorted$avg_logFC)
  names(gene.res.logfc.symbol) <- row.names(gene.res.sorted)
  contr.gsea <- GSEA(gene.res.logfc.symbol, 
                     TERM2GENE = gmt.obj,
                     nPerm = 10000, 
                     pvalueCutoff = adj.pval.thr)
  contr.gsea.res <- as.data.frame(contr.gsea)
  assign(paste0("contr.gsea.res_",i), contr.gsea.res)
  if (i == "clu11_vs_clu0_1_2") {
    terms <- c("GO_CELL_CELL_JUNCTION_ORGANIZATION",
               "GO_ACTIN_CYTOSKELETON",
               "GO_EXTRACELLULAR_MATRIX_STRUCTURAL_CONSTITUENT",
               "GO_STRUCTURAL_CONSTITUENT_OF_RIBOSOME",
               "GO_RIBOSOME",
               "GO_TRANSLATIONAL_INITIATION")
  } else {
    terms <- c("GO_MITOTIC_NUCLEAR_DIVISION",
               "GO_CELL_DIVISION",
               "GO_MITOTIC_CELL_CYCLE",
               "GO_REGULATION_OF_NOTCH_SIGNALING_PATHWAY",
               "GO_CYTOSOLIC_RIBOSOME",
               "GO_ENDOTHELIAL_CELL_MIGRATION")
  }
  ti <- contr.gsea.res[c(contr.gsea.res$Description %in% terms), ]
  ti <- mutate(ti, color = case_when(ti$NES > 0 ~ "Upregulated",
                                     ti$NES < 0 ~ "Downregulated"))
  ti <- arrange(ti, NES)
  ti$Description <- factor(ti$Description, levels = ti$Description)
  p <- ggplot(data=ti, aes(x=NES,  y=Description, fill = color)) +
    geom_bar(stat="identity", width = 0.7) +
    scale_fill_manual(values = c("Upregulated" = "red","Downregulated" = "blue"),name = "") +
    ylab("Terms") +
    ggtitle(paste(i)) +
    theme_bw() +
    theme(
      axis.title.x = element_text(colour="black",family = "Arial", size=12*96/72),
      axis.text.x = element_text(colour="black",family = "Arial", size=10*96/72),
      axis.title.y = element_text(colour="black",family = "Arial", size=12*96/72),
      axis.text.y = element_text(colour="black",family = "Arial", size=8*96/72),
      aspect.ratio = 0.8)
  assign(paste0("p_",i), p)
}

# Fig5D -------------------------------------------------------------------

runx1@meta.data[["Phase"]] <- recode_factor(runx1@meta.data[["Phase"]],
                                            "G1" = "G1", 
                                            "S" = "S", 
                                            "G2M" = "G2/M")
## grouping clusters 0,1,2 and cluster 16,17
runx1@meta.data[["RNA_snn_res.0.6"]] <- recode_factor(runx1@meta.data[["RNA_snn_res.0.6"]],
                                                          "0" = "0,1,2", 
                                                          "1" = "0,1,2", 
                                                          "2" = "0,1,2",
                                                          "11" = "11",
                                                          "16" = "16,17",
                                                          "17" = "16,17")
cc_umap <- DimPlot(object = runx1,
                   reduction = "umap",
                   group.by = "Phase",
                   split.by = "RNA_snn_res.0.6",
                   label = F,
                   repel = T,
                   pt.size = 0.8,
                   label.size = 8,
                   cols = c("G1" = "#E6AB02", 
                            "S" = "#7570B3", 
                            "G2/M" = "#66A61E")) +
  ggtitle("") +
  xlab("UMAP1") +
  ylab("UMAP2") +
  theme(legend.text = element_text(size = 12*96/72),
        axis.text.x = element_text(color = "black", family = "Arial",size = 10*96/72),
        axis.text.y = element_text(color = "black", family = "Arial",size = 10*96/72),
        axis.title.x = element_text(color = "black", family = "Arial",size = 12*96/72),
        axis.title.y = element_text(color = "black", family = "Arial",size = 12*96/72),
        aspect.ratio = 1,
        plot.margin = margin(0, 0, 0, 0, "pt"),
        panel.background = element_blank()) +
  guides(color = guide_legend(override.aes = list(size=4)))

## average cell counts per cluster
ggp_obj_clu <- melt(table(runx1$Phase, runx1$RNA_snn_res.0.6))
colnames(ggp_obj_clu) <- c("Phase","Cluster", "Count")
cc.clusters <- c("0,1,2","11","16,17")
ggp_obj_clu <- ggp_obj_clu[c(ggp_obj_clu$Cluster %in% cc.clusters), ]
for (i in cc.clusters) {
  totalB <- subset(ggp_obj_clu, ggp_obj_clu$Cluster==i)
  totalB <- totalB %>% 
    mutate(percentage = Count/sum(Count))
  totalB$percentage <- totalB$percentage*100
  totalB$fraction = totalB$Count / sum(totalB$Count)
  # Compute the cumulative percentages
  totalB$ymax <- cumsum(totalB$fraction)
  totalB$ymin <- c(0, head(totalB$ymax, n=-1))
  totalB$labelPosition <- (totalB$ymax + totalB$ymin) / 2
  # Compute a good label
  totalB$label <- paste0(totalB$Phase, ":","\n",round(totalB$percentage, 2), "%")
  assign(paste0("totalB_clu_", i), totalB)
  p <- ggplot(totalB, aes(ymax=ymax, ymin=ymin, xmax=4, xmin=3, fill=Phase)) +
    geom_rect() +
    geom_text(x=5, aes(y=labelPosition, label=label), size=5) +
    #scale_fill_brewer(palette = "Set1") +
    scale_fill_manual(values = c("G1" = "#E6AB02", 
                                 "S" = "#7570B3", 
                                 "G2/M" = "#66A61E")) +
    coord_polar(theta="y") +
    xlim(c(2, 5)) +
    theme_void() +
    theme(plot.margin = margin(0, 0, 0, 0, "pt")) +
    theme(legend.position = "none")
  assign(paste0("p_clu_",i), p)
}
p_final <- cc_umap / (`p_clu_0,1,2` | p_clu_11 | `p_clu_16,17`)

# Fig5E -------------------------------------------------------------------

cds <- order_cells(cds, root_cells = start)
cds <- estimate_size_factors(cds)
gi <- c("FCGR2B","HES1","HEY1", "HEY2")
cds_gi <- cds[rowData(cds)$gene_short_name %in% gi,]
plot_genes_in_pseudotime(cds_subset = cds_gi, 
                         ncol = 2,
                         color_cells_by = "RNA_snn_res.0.6", 
                         min_expr = NULL,
                         cell_size = 1)