Commit dba01155 authored by Stefano Beretta's avatar Stefano Beretta
Browse files

Added analysis scripts and notebooks.

parent de05f37d
Lane,Sample,Index,Group
*,FB-10-A4,SI-GA-G1,AB_Ctrl
*,FB-11-C0,SI-GA-G2,CD_High
*,FB-12-F1,SI-GA-G3,EF_Low
*,FB-16-B1,SI-GA-G4,AB_Ctrl
*,FB-17-E3,SI-GA-G5,EF_Low
*,FB-18-F2,SI-GA-G6,EF_Low
*,FB-4-B3,SI-GA-G7,AB_Ctrl
*,FB-5-C1,SI-GA-G8,CD_High
*,FB-6-D1,SI-GA-G9,CD_High
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
library(SeuratWrappers)
library(Seurat)
library(SeuratDisk)
ts <- c("FB_10-A4_T", "FB_12-F1_T", "FB_16-B1_T", "FB_18-F2_T", "FB_4-B3_T", "FB_6-D1_T", "FB_11-C0_T", "FB_17-E3_T", "FB_5-C1_T")
veldata <- list()
velobj <- list()
for (i in ts) {
veldata[[i]] <- ReadVelocity(file = paste0("Birocchi_SciTraMed2022/velocyto_loom/", i, ".loom"))
velobj[[i]] <- as.Seurat(x = veldata[[i]])
velobj[[i]] <- RenameCells(object = velobj[[i]], new.names = gsub(pattern = "merged", replacement = "", x = colnames(velobj[[i]])))
velobj[[i]] <- RenameCells(object = velobj[[i]], new.names = gsub(pattern = "x$", perl = T, replacement = "", x = colnames(velobj[[i]])))
velobj[[i]] <- RenameCells(object = velobj[[i]], new.names = gsub(pattern = ":", perl = T, replacement = "_", x = colnames(velobj[[i]])))
velobj[[i]] <- RenameCells(object = velobj[[i]], new.names = gsub(pattern = "_", perl = T, replacement = "-", x = colnames(velobj[[i]])))
velobj[[i]] <- RenameCells(object = velobj[[i]], new.names = gsub(pattern = "-T-", perl = T, replacement = "_", x = colnames(velobj[[i]])))
velobj[[i]]@meta.data$orig.ident <- i
}
velobj_ctrl <- merge(merge(velobj[["FB_10-A4_T"]], velobj[["FB_16-B1_T"]]), velobj[["FB_4-B3_T"]])
velobj_high <- merge(merge(velobj[["FB_11-C0_T"]], velobj[["FB_5-C1_T"]]), velobj[["FB_6-D1_T"]])
velobj_low <- merge(merge(velobj[["FB_12-F1_T"]], velobj[["FB_18-F2_T"]]), velobj[["FB_17-E3_T"]])
velo_full <- merge(merge(velobj_ctrl, velobj_high), velobj_low)
wdir <- "Birocchi_SciTraMed2022/results"
macro_obj <- readRDS(paste(wdir, "MacrophagesFiltered", "01-fastMNN_2", "MacrophagesFiltered_fastMNN_final.rds", sep = "/"))
colnames(macro_obj)[1:5]
# write.csv(Cells(macro_obj), file = paste(wdir, "MacrophagesFiltered", "01-fastMNN_2", "MacrophagesFiltered_fastMNN_cellID_obs.csv", sep = "/"), row.names = FALSE)
# write.csv(Embeddings(macro_obj, reduction = "umap"), file = paste(wdir, "MacrophagesFiltered", "01-fastMNN_2", "MacrophagesFiltered_fastMNN_cell_embeddings.csv", sep = "/"))
# colnames(macro_obj@meta.data)
# write.csv(macro_obj@meta.data[,c("orig.ident", "RNA_Group", "RNA_snn_res.0.6", "RNA_snn_res.1", "RNA_snn_res.1.2")],
# file = paste(wdir, "MacrophagesFiltered", "01-fastMNN_2", "MacrophagesFiltered_fastMNN_mdata.csv", sep = "/"))
#
# #write.csv(Cells(obj), file = "cellID_obs.csv")
# macro_obj_embedding <- Embeddings(macro_obj, reduction = "umap")
# head(macro_obj_embedding)
#
# #write.csv(Embeddings(obj, reduction = "umap"), file = "cell_embeddings.csv")
# #my_clusters <- obj@meta.data$RNA_snn_res.0.6
# macro_obj_clu <- FetchData(object = macro_obj, vars = "RNA_snn_res.0.6")
# colnames(macro_obj_clu) <- c("Seurat_RNA_snn_res.0.6")
# head(macro_obj_clu)
# #write.csv(obj@meta.data$seurat_clusters, file = "clusters.csv")
# macro_obj_groups <- FetchData(object = macro_obj, "RNA_Group")
# colnames(macro_obj_groups) <- c("RNA_Group")
# head(macro_obj_groups)
#
# cells <- intersect(Cells(velo_full), Cells(macro_obj))
# length(Cells(velo_full))
# length(Cells(macro_obj))
# length(cells)
# velo_full <- subset(velo_full, cells = cells)
#
# velo_full[["RNA"]] <- velo_full[["spliced"]]
# #########velo_full[["RNA"]] <- macro_obj@assays$RNA
# # adding clusters and groups
# velo_full <- AddMetaData(object = velo_full, metadata = macro_obj_clu)
# velo_full <- AddMetaData(object = velo_full, metadata = macro_obj_groups)
#
# colnames(velo_full@meta.data)
#
# names(velo_full@assays)
# str(velo_full)
# # creating fake umap slots in order to create the reduction slot associated
# velo_full <- SCTransform(velo_full)
# velo_full <- RunPCA(velo_full)
# velo_full <- RunUMAP(velo_full, dims = 1:30, n.components = 2)
# velo_full <- FindNeighbors(velo_full, dims = 1:30)
# velo_full <- FindClusters(velo_full)
# DefaultAssay(velo_full) <- "RNA"
# # restore original UMAPs
# head(velo_full@reductions$umap@cell.embeddings)
# head(macro_obj_embedding[rownames(velo_full@reductions$umap@cell.embeddings),])
# velo_full@reductions$umap@cell.embeddings <- macro_obj_embedding[rownames(velo_full@reductions$umap@cell.embeddings),]
# SaveH5Seurat(velo_full, filename = paste(wdir, "MacrophagesFiltered", "01-fastMNN_2","MacrophagesFiltered_velo.h5Seurat", sep = "/"), overwrite = T)
# Convert(paste(wdir, "MacrophagesFiltered", "01-fastMNN_2","MacrophagesFiltered_velo.h5Seurat", sep = "/"), dest = "h5ad", overwrite = T)
# Groups
Idents(macro_obj) <- "RNA_Group"
velobj_groups <- list("AB_Ctrl" = velobj_ctrl, "CD_High" = velobj_high, "EF_Low" = velobj_low)
for (group in names(velobj_groups)) {
print(group)
velo_sub <- velobj_groups[[group]]
macro_obj_sub <- subset(macro_obj, idents = group)
macro_obj_sub_embedding <- Embeddings(macro_obj_sub, reduction = "umap")
head(macro_obj_sub_embedding)
macro_obj_sub_clu <- FetchData(object = macro_obj_sub, vars = "RNA_snn_res.0.6")
head(macro_obj_sub_clu)
cells_sub <- intersect(Cells(velo_sub), Cells(macro_obj_sub))
length(Cells(velo_sub))
length(Cells(macro_obj_sub))
length(cells_sub)
velo_sub <- subset(velo_sub, cells = cells_sub)
velo_sub[["RNA"]] <- velo_sub[["spliced"]]
# adding clusters
velo_sub <- AddMetaData(object = velo_sub, metadata = macro_obj_sub_clu)
# creating fake umap slots in order to create the reduction slot associated
velo_sub <- SCTransform(velo_sub)
velo_sub <- RunPCA(velo_sub)
velo_sub <- RunUMAP(velo_sub, dims = 1:30)
velo_sub <- FindNeighbors(velo_sub, dims = 1:30)
velo_sub <- FindClusters(velo_sub)
DefaultAssay(velo_sub) <- "RNA"
# restore original UMAPs
head(velo_sub@reductions$umap@cell.embeddings)
head(macro_obj_sub_embedding[rownames(velo_sub@reductions$umap@cell.embeddings),])
velo_sub@reductions$umap@cell.embeddings <- macro_obj_sub_embedding[rownames(velo_sub@reductions$umap@cell.embeddings),]
SaveH5Seurat(velo_sub, filename = paste(wdir, "MacrophagesFiltered", "01-fastMNN_2", paste0("MacrophagesFiltered-", group, "_velo.h5Seurat"), sep = "/"), overwrite = T)
Convert(paste(wdir, "MacrophagesFiltered", "01-fastMNN_2", paste0("MacrophagesFiltered-", group, "_velo.h5Seurat"), sep = "/"), dest = "h5ad", overwrite = T)
}
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment