Commit 86b68056 authored by Stefano Beretta's avatar Stefano Beretta
Browse files

Upload New File

parent c42e67ff
library(Seurat)
library(ggplot2)
library(dplyr)
library(openxlsx)
########################
### General Settings ###
########################
# Working dir
wdir <- "~/Downloads/TIGET/Squadrito/scSquadrito/squadrito_livertumor2022_spatial"
# Data dir
data_dir <- paste(wdir, "data", sep = "/")
# Results dir
out_dir <- paste(wdir, "results", sep = "/")
dir.create(path = out_dir, showWarnings = F)
# Read Obj
full_obj <- readRDS(file = paste(out_dir, "crc.integrated.rds", sep = "/"))
DefaultAssay(full_obj) <- "Spatial"
signatures <- list("KC_long" = c("Vsig4","Clec4f","Marco","Fcna","Cd5l", "C1qa","C1qb",
"C1qc","Slc40a1","Clec1b","Cd38","Ptgs1","Nr1h3"),
"TAMs" = c("Lyz2", "Ahnak", "Itgam", "Chil3", "S100a6", "Anxa2",
"Lyz1", "Mmp7", "Spp1", "Mmp12", "Timp1"),
"IFNa_TAMs" = c("Ccl2","Chil3","Ly6c2","Arg1","Cxcl10","Slfn4","F10",
"Lyz2","Msrb1","Hp","Slfn1","Cebpb","Fcgr1","Ifi204",
"Plac8","Gm21188","Mafb","Tgm2","Ms4a4c","Ifi27l2a"),
"Cancer_cells" = c("Phlda1","Krt18","Krt8","Lars2","Krt19","Epcam",
"Jun","Cldn7","Lgals4","Cldn4","Cldn3","Krt7",
"Tcim","Egr1","Sox4","2200002D01Rik","Axin2",
"Gpx2","Taf1d","Plk2"),
"Hepatocytes" = c("Fabp1","Apoc1","Apoa2","Mt1","Alb","Serpina1e",
"Ttr","Gsta3","Serpina1c","Akr1c6","Gstm1",
"Serpina1a","Serpina1b","Gnmt","Apoc3","Cdo1",
"Bhmt","Rgn","Ass1","Ttc36")
)
for (sig in names(signatures)) {
full_obj <- AddModuleScore(object = full_obj, features = list(signatures[[sig]]), name = sig)
}
# IFN
miDB_sig2 <- readRDS(paste(wdir, "reference", "miDB_sig3.rds", sep = "/")) #Ctrl
ifn_sig <- miDB_sig2[["GOBP_RESPONSE_TO_TYPE_I_INTERFERON"]]
ifn_sig_filt <- ifn_sig[ifn_sig %in% rownames(full_obj)]
full_obj <- AddModuleScore(object = full_obj, features = list(ifn_sig_filt), name = "RespTypeIifn")
full_df_sig <- data.frame()
for (sig in c(names(signatures), "RespTypeIifn")) {
df <- full_obj@meta.data[, c(paste0(sig, "1"), "Zones", "TreatGroups", "orig.ident")]
colnames(df) <- c("Sig", "Zones", "RNA_Group", "Sample")
df$SigName <- sig
full_df_sig <- rbind(full_df_sig, df)
}
full_df_cor_group <- full_df_sig %>%
group_by(SigName, Zones, RNA_Group) %>%
summarise(MedianMS = median(Sig))
min_sig <- full_df_cor_group %>% group_by(SigName) %>% summarise(SigMin = min(MedianMS))
full_df_cor_group <- merge(full_df_cor_group, min_sig, by = "SigName")
write.xlsx(x = list("MedianSig" = full_df_cor_group[,-5]),
file = paste(out_dir, "Full_SignaturesMedianModScore.xlsx", sep = "/"))
p <- ggplot(full_df_cor_group, aes(x = Zones, y = MedianMS, color = RNA_Group,
fill = RNA_Group, group = RNA_Group,
ymin = SigMin, ymax = MedianMS)) +
theme_bw() +
theme(legend.position = "right",
legend.background = element_rect(color = "black"),
axis.text.x = element_text(angle = 45, hjust = 1)) +
#geom_line() +
geom_point() +
geom_ribbon(position = 'identity', alpha = .1,) +
xlab("") +
ylab("Median MScore") +
facet_wrap(.~SigName, ncol = 3, scales = "free")
ggsave(filename = paste(out_dir, "Full_SignaturesMedianModScore.pdf", sep = "/"),
plot = p, width = 10, height = 7)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment