ED_Figure5_plots.R 6.68 KB
Newer Older
Monah Abou Alezz's avatar
Monah Abou Alezz committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
suppressPackageStartupMessages(library(Seurat))
suppressPackageStartupMessages(library(monocle3))
suppressPackageStartupMessages(library(ggplot2))
suppressPackageStartupMessages(library(dplyr))

# ED_Fig5B ----------------------------------------------------------------

## load scRNAseq data from public dataset GSE162950
load("Scarfo_HEC2023/scRNAseq/seurat_object.Rdata")
EHT_scorecard <- c("CXCR4","SOX17","GJA5","MECOM","HOXA9","SPN","CD44","ITGA2B","HLF","GFI1","MLLT3","KCNK17","MYB","STAT5A","SMIM24","RAB27B","SPINK2")
## Select HE cells
sample <- SetIdent(sample, value = sample@meta.data$seurat_clusters)
index1 = GetAssayData(sample, slot="counts")["RUNX1",]>0
index2 = GetAssayData(sample, slot="counts")["CDH5",]>0
index3 = GetAssayData(sample, slot="counts")["PTPRC",]==0
index4 = GetAssayData(sample, slot="counts")["FCGR2B",]==0
bars = colnames(sample)[Idents(sample) %in% c(0,3)]
bars1 = colnames(sample)[index1 & index2 & index3 & index4]
bars2 = intersect(bars, bars1)
## Establish identity for FCGR2B- HE cells
Idents(sample, cells=bars2) = "FCGR2B=0"
index5 = GetAssayData(sample, slot="counts")["FCGR2B",]>0
bars3 = colnames(sample)[index1 & index2 & index3 & index5]
bars4 = intersect(bars, bars3)
## Establish identity for FCGR2B+ HE cells
Idents(sample, cells=bars4) = "FCGR2B_exp"
sample$CellType <- Idents(sample)
sample_sub <- subset(sample, CellType=="FCGR2B_exp" | CellType=="FCGR2B=0")
DotPlot(sample_sub, 
             features=EHT_scorecard, 
             cols=c("grey90","red3"),
             dot.scale = 10) +
  coord_flip()

# ED_Fig5C ------------------------------------------------------------------

## load Seurat data
sample <- readRDS("Scarfo_HEC2023/scRNAseq/WNTd_HE.rds")
sample@meta.data[["Cell.Annotations"]] <- recode_factor(sample@meta.data[["RNA_snn_res.0.6"]],
                                                           "0" = "HECs", 
                                                           "1" = "HECs", 
                                                           "2" = "HECs", 
                                                           "3" = "Venous cells", 
                                                           "4" = "Venous cells", 
                                                           "5" = "Arterial ECs", 
                                                           "6" = "Arterial ECs", 
                                                           "7" = "Venous cells", 
                                                           "8" = "ECs (M phase)",
                                                           "9" = "Venous cells",
                                                           "10" = "EndoMT cells",
                                                           "11" = "HECs",
                                                           "12" = "Arterial ECs",
                                                           "13" = "Lymphatic ECs",
                                                           "14" = "Arterial ECs",
                                                           "15" = "Allantois/Placenta",
                                                           "16" = "HECs",
                                                           "17" = "HECs",
                                                           "18" = "EndoMT cells",
                                                           "19" = "SM cells",
                                                           "20" = "EndoMT cells",
                                                           "21" = "EndoMT cells")

DimPlot(object = sample,
        reduction = "umap",
        group.by = "Cell.Annotations",
        label = F,
        repel = T,
        pt.size = 0.8,
        label.size = 6,
        cols = c('HECs' = "#377EB8", 
                 'Lymphatic ECs' = "#4DAF4A",
                 'Arterial ECs' = "#E41A1C",
                 'Venous cells' = "#FF7F00",
                 'EndoMT cells' = "#E6AB02",
                 'Allantois/Placenta' = "#984EA3",
                 'SM cells' = "#A6761D",
                 "ECs (M phase)" = "#A50026"))


# ED_Fig5D - ED_Fig5E ------------------------------------------------------------------
FeaturePlot(object = sample,
            features = c("RUNX1", "FCGR2B"),
            cols = c("grey90","blue"),
            order = T,
            pt.size = 0.1)

# ED_Fig5F ------------------------------------------------------------------

runx1 <- readRDS("Scarfo_HEC2023/scRNAseq/RUNX1_clusters.rds")

## Monocle3
Idents(runx1) <- "RNA_snn_res.0.6"
start = WhichCells(runx1,idents = "0")
expression_matrix <- runx1@assays[["RNA"]]@counts
cell_metadata <- runx1@meta.data
cell_metadata$orig.ident <- factor(cell_metadata$orig.ident, levels = unique(cell_metadata$orig.ident))
gene_annotation <- data.frame("gene_short_name" = rownames(runx1))
rownames(gene_annotation) <- gene_annotation$gene_short_name
cds <- new_cell_data_set(expression_data = expression_matrix, 
                         cell_metadata = cell_metadata, 
                         gene_metadata = gene_annotation)
cds <- preprocess_cds(cds, num_dim = 50)
cds <- reduce_dimension(cds)
## Construct and assign the made up partition
recreate.partition <- c(rep(1, length(cds@colData@rownames)))
names(recreate.partition) <- cds@colData@rownames
recreate.partition <- as.factor(recreate.partition)
cds@clusters@listData[["UMAP"]][["partitions"]] <- recreate.partition
## Assign the cluster info
list_cluster <- runx1@meta.data[["RNA_snn_res.0.6"]]
names(list_cluster) <- runx1@assays[["RNA"]]@data@Dimnames[[2]]
cds@clusters@listData[["UMAP"]][["clusters"]] <- list_cluster
cds@clusters@listData[["UMAP"]][["louvain_res"]] <- "NA"
## Assign UMAP coordinate
reducedDims(cds)[["UMAP"]] <- runx1@reductions[["umap"]]@cell.embeddings
### Reset colnames and rownames (consequence of UMAP replacement)
rownames(cds@principal_graph_aux[['UMAP']]$dp_mst) <- NULL
## Learn Graph
cds <- learn_graph(cds = cds,use_partition = T,learn_graph_control=list(ncenter=220,minimal_branch_len=15),verbose = T)
cds <- order_cells(cds, root_cells = start)
plot_cells(cds,
           color_cells_by = "pseudotime",
           label_groups_by_cluster=FALSE,
           label_leaves=T,
           label_branch_points=T,
           group_label_size = 8,
           graph_label_size = 3,
           cell_size = 1,
           trajectory_graph_segment_size = 1)


# ED_Fig5G ------------------------------------------------------------------

cds <- estimate_size_factors(cds)
gi <- c("H19","KCNK17","RUNX1", "MYB", "SPN")
cds_gi <- cds[rowData(cds)$gene_short_name %in% gi,]
plot_genes_in_pseudotime(cds_subset = cds_gi, 
                         ncol = 3,
                         color_cells_by = "RNA_snn_res.0.6", 
                         min_expr = NULL,
                         cell_size = 1)